Oxford Energy Superhub Battery Storage and ground source heat pumps

Kensa ground source heat pumps to feature in a global model for cities to cut carbon and improve air quality

  • A £41m world-first Energy Superhub will be built in Oxford, making it a model for cities around the world to cut carbon and improve air quality, the consortium announced today. The consortium partners are Oxford City Council, Pivot Power, Habitat Energy, Kensa Contracting, redT energy and the University of Oxford.
  • A multi-million award from the UK’s innovation agency, UK Research and Innovation (UKRI), will accelerate delivery timescales of the project to decarbonise both heat and transport.
  • The Energy Superhub Oxford project involves the deployment of grid-scale energy storage and supports the decarbonisation of transport, power and heat across the city, supporting Oxford City Council in its journey to zero carbon.
  • Pivot Power will create a new connection to National Grid’s transmission network which will service the largest hybrid battery ever deployed, and power a 10 km network of charging stations that will kickstart an electric vehicle (EV) revolution across the city.
  • Kensa Contracting will install over 300 UK designed and manufactured innovative low-carbon ground source heat pump systems, which will result in 25% lower running costs than traditional gas boilers.
  • Habitat Energy, an Oxford-based firm, will provide the intelligence to optimise the trading of the battery storage in the power markets, as well as the timing of the EV charging and heat pump activation to maximise value to the end consumer and benefit to the grid.
  • redT energy, the UK-based energy storage infrastructure specialist, will showcase its cutting-edge vanadium flow machines.
  • The University of Oxford’s Environmental Change Institute and Department of Engineering Science will assess the impacts of the project and advise on how they can be replicated, both across the country and abroad.

Download Kensa’s Guide on Energy Superhub Oxford

Energy Superhub Oxford

The City of Oxford will pioneer a model of rapid transport and heat electrification that can be rolled out to other cities to reduce air pollution and support government plans to decarbonise the UK economy. Energy Superhub Oxford will demonstrate an ecosystem of practical decarbonisation approaches by applying machine learning and grid scale energy storage infrastructure to bypass network constraints. The project aims to reduce emissions and improve public health by accelerating a switch to electric vehicles and decarbonising heating for homes and buildings to support Oxford City Council’s journey to zero carbon. Smart software will manage the energy storage, electric vehicle charging and heat pumps, to reduce strain on the grid and allow it to accommodate more renewables. The project aims to save 20,000 tonnes of CO2 per year by 2021, rising to 44,000 tonnes per year by 2032. UK Research and Innovation (UKRI) will contribute c.£10 million to support the £41 million project.

Earlier this year the City Council declared a climate emergency in Oxford and committed to continue working with partners across the city and region to deliver widespread carbon reductions. Oxford City Council is a member of Low Carbon Oxford, a network of 40 public/private organisations that aims to reduce citywide emissions by 40% of 2005 levels by 2020.

Councillor Tom Hayes, Executive Board Member for a Safer and Greener Environment said:

The City Council is working towards a Zero Carbon Oxford to tackle dangerous climate change in the time available to us to save the planet. Uniquely, this £41m once-in-a-generation downpayment on Oxford will move the Council closer to achieving this vision. Leading businesses are investing in Oxford because they recognise that we’re already trialling new technologies exactly like Energy Superhub Oxford. Today’s announcement allows us as a city to embrace our technological future.

This exciting project will enable the City Council to install more electric vehicle charging points of the kind that charge vehicles quickest. It gives Black Cab drivers additional support to shift from 100% diesel today to 100% electric in the next few years. It enables the council to move our own vehicles to electric on a faster timescale and, crucially, to install heat energy across homes to tackle fuel poverty.

By 2020 the Energy Superhub Oxford consortium will launch the world’s largest commercial hybrid energy storage system (50 MW) and a network of ultra-rapid and fast charging stations connected directly to National Grid’s extra-high voltage transmission system. Pivot Power’s private-wire network across south Oxford will have enough power to charge hundreds of vehicles at the same time. Money-saving ground source heat pumps from Kensa will subsequently be installed in c.300 buildings and homes.

The council will use some of the UKRI grant to convert part of its vehicle fleet to electric, with aims to procure new electric vehicles including refuse collection trucks, sweepers, tippers and vans. The funding will also support the Council to work with a partner offering a ‘Try before you Buy’ programme for Hackney Carriage Vehicle drivers in Oxford. This will assist the transition of the black cab fleet from 100% diesel to 100% electric by 2025.

Habitat Energy will develop the optimisation platform for the project which will control the energy storage, importing and exporting power to help balance the grid second by second, giving it the flexibility to bring more wind and solar onto the system. The optimisation platform will also manage the electric vehicles and heat pumps, maximising their use of cheap energy and using them to provide additional flexibility to the electricity network.

From 2020 to 2021 Kensa Contracting will design and install ground source heat pump systems in 300 homes using an innovative shared ground loop system that sees each household with an individual Kensa Heat Pump connected to a larger ambient temperature district heating network.  Running costs for this type of system compare well to mains gas boilers, with half the carbon footprint. The optimisation platform is expected to cut heating bills and carbon emissions by a further 25%, developing a tailored plan for each home based on its heat profile and taking advantage of time-of-use tariffs to shift heating demand away from expensive, high carbon times and maximise the use of low carbon, cheap, off-peak power.

Dr. Matthew Trewhella, Managing Director of Kensa Contracting said:

Ground source heat pumps are a tried and tested technology that have been shown to produce significant carbon savings, low running costs and zero point of use air pollution. The rapid decarbonisation of the electricity grid over the last 5 years has added more momentum in the push towards the electrification of heat. There have been concerns expressed that shifting load from fossil fuels such as oil, LPG and ultimately mains gas will unduly increase the strain on the electricity grid beyond its capacity – particularly at peak times. By using smart controls that learn the occupant’s preferences and building heat physics, it will be possible to avoid the peaks of grid strain and shift load to the times when the grid can best accommodate it. Better still, these times also have lower carbon and lower cost electricity which further increases the appeal of ground source heat pumps. This combination means that ground source heat pumps transform from being a potential strain on the grid to becoming part of the solution.  When added to the battery storage and electric vehicle charging elements of this project, it creates a powerful energy system that is fit and ready for a low carbon future.

Energy Superhub Oxford time of use tariffs and sap carbon emissions for ground source heat pumps
*Daily average cost and carbon graph: Base electricity charges based on Sheffield averaged on the Big Six once a month – average electricity cost per kWh (www.ukpower.co.uk/home-energy/tariffs-per-unit-kwh, www.nottenergy.com/energy_cost_comparison). Octopus Agile Tariff (average over 24hrs). Average CO2/kWh over 24hrs in winter (www.carbonintensity.org.uk)

The project will see Pivot Power install the world’s largest hybrid lithium ion / vanadium redox flow machine energy storage system (50 MW).  It will combine the high-power capabilities of a lithium-ion battery with 2 MW / 5 MWh of the heavy cycling, non-degrading characteristics of vanadium redox flow machines, supplied by UK energy storage experts, redT energy. Utilising both lithium-ion batteries and vanadium redox flow machines together in one hybrid system, combines the strengths of the two technologies to meet the complex demands of multiple applications while extending the lifespan of the lithium-ion battery.

The use of redT’s flow machine technology, Habitat’s pioneering real-time energy optimisation and trading capacity incorporating degradation management for the lithium-ion element, and the Kensa shared loop ground source heat pump technologies will make the Energy Superhub Oxford project one of the largest examples of real-world Smart Local Energy Systems across energy vectors.

The University of Oxford will evaluate the performance of the energy storage system, and assess the environmental, social and economic impacts of the project on local stakeholders. This will lead to insights into governance and reproducibility, as well as validated performance models of large-scale battery systems. Government plans to cut carbon emissions and improve air quality could see millions of electric vehicles and heat pumps in use by 2030, and the project will show how this can be achieved while maintaining a stable, efficient, cost-effective electricity network.

Energy and Clean Growth Minister, Claire Perry said:

Oxford is set for a smart energy overhaul, with these projects aiming to meet the city’s energy needs through greener, low carbon technologies. Backed by government funding, this has the potential to completely change the way people go about their daily lives – from going to work on an electric bus to using the heat rising from the earth to heat your home without gas.

These projects are an example of our modern Industrial Strategy in action, helping companies and consumers seize the opportunity of the global shift to a cleaner, greener, more flexible energy system.

Rob Saunders, Deputy Challenge Director, Prospering from the Energy Revolution, UK Research and Innovation added:

We all need energy systems that are cheaper, cleaner and consumer-friendly. We have a great opportunity with the Energy Superhub to show just how innovation can deliver this energy ambition for the future. Supported by the Industrial Strategy Challenge Fund, this project can drive investment, create high-quality jobs and grow companies with export potential.

The Smart Local Energy Systems Demonstrator grant will significantly accelerate the delivery timescales of the Energy Superhub. The project is funded by UK Research and Innovation through the Industrial Strategy Challenge Fund. Project Local Energy Oxfordshire (LEO) led by Scottish and Southern Electricity Networks (SSEN) has also received funding. LEO will explore how the growth in local renewables, electric vehicles (EVs), battery storage, and demand side response can be supported by a local, flexible, and responsive electricity grid unlocking new opportunities for consumers and market providers.

The University of Oxford, together with a UK university-led energy revolution research consortium dubbed EnergyREV and the Energy Systems Catapult “Energy Revolution Integration Service” (ERIS) will study the project to produce reports and recommendations that will support the rollout of similar initiatives elsewhere in the UK, and around the world.

Share Button

Related Content

Brochures: Energy Superhub Oxford

Download Kensa Contracting’s two-page guide about Energy Superhub Oxford, and find out how to get involved in this world-first project featuring ground source heat pumps, battery storage, electric vehicle charging points, and smart controls.


Blog: The Smart Revolution: Meeting Grid Demand with Heat Pump Innovations

Dr. Matthew Trewhella, Kensa Contracting’s Managing Director, explores the cutting-edge technologies driving innovation in energy networks, and identifies solutions to deliver sustainable, low carbon, low cost heating and cooling, whilst balancing energy demand on the grid.      


Blog: Investigating the impact of heat pumps on the electricity grid

The Government’s Spring Statement, which coincided with a recent announcement from the Committee for Climate Change (CCC), set out a clear commitment to the rapid decarbonisation of heat with the introduction of a future homes standard mandating the end of fossil-fuel heating systems in all new houses from 2025.